Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: "Dumont’s statistic on words"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học hay nhất của tạp chí toán học quốc tế đề tài: Dumont’s statistic on words. | Dumont s statistic on words Mark Skandera Department of Mathematics University of Michigan Ann Arbor MI mskan@math.lsa.umich.edu Submitted August 4 2000 Accepted January 15 2001. MR Subject Classifications 06A07 68R15 Abstract We define Dumont s statistic on the symmetric group Sn to be the function dmc Sn N which maps a permutation Ơ to the number of distinct nonzero letters in code ơ . Dumont showed that this statistic is Eulerian. Naturally extending Dumont s statistic to the rearrangement classes of arbitrary words we create a generalized statistic which is again Eulerian. As a consequence we show that for each distributive lattice J P which is a product of chains there is a poset Q such that the f-vector of Q is the -vector of J P . This strengthens for products of chains a result of Stanley concerning the flag -vectors of Cohen-Macaulay complexes. We conjecture that the result holds for all finite distributive lattices. 1 Introduction Let Sn be the symmetric group on n letters and let us write each permutation in Sn in one line notation 1 n. We call position i a descent in if i i 1 and an excedance in if i i. Counting descents and excedances we define two permutation statistics des Sn N and exc Sn N by des i I i i i exc i I i i . It is well known that the number of permutations in Sn with k descents equals the number of permutations in Sn with k excedances. This number is often denoted A n k 1 and the generating function AnO X A n k 1 xk 1 X X k 0 K2Sn ft2Sn THE ELECTRONIC JOURNAL OF COMBINATORICS 8 2001 R11 1 is called the nth Eulerian polynomial. Any permutation statistic stat Sn N satisfying An x X . 2S or equivalently k 2 Sn I stat K kg k 2 Sn I des K kg for k 0 . n 1 is called Eulerian. A third Eulerian statistic essentially defined by Dumont 6 counts the number of distinct nonzero letters in the code of a permutation. We define code K to be the word Cl cn where ci j i 1 Kj Kig. Denoting Dumont s statistic by dmc we have dmc K 0 I appears in code k g. .

TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.