Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: "Multigraphs (only) satisfy a weak triangle removal lemma"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Multigraphs (only) satisfy a weak triangle removal lemma. | Multigraphs only satisfy a weak triangle removal lemma Asaf Shapira Raphael Yusteh Submitted Dec 30 2008 Accepted Mar 5 2009 Published Mar 20 2009 Mathematics Subject Classification 05C35 Abstract The triangle removal lemma states that a simple graph with o n3 triangles can be made triangle-free by removing o n2 edges. It is natural to ask if this widely used result can be extended to multi-graphs. In this short paper we rule out the possibility of such an extension by showing that there are multi-graphs with only n2 o 1 triangles that are still far from being triangle-free. On the other hand we show that for some slowly growing function g n w 1 if a multi-graph has only g n n2 triangles then it must be close to being triangle-free. The proof relies on variants of the Ruzsa-Szemeredi theorem 15 . 1 Introduction Motivated by a problem in the theory of extremal hypergraphs Ruzsa and Szemeredi 15 proved the following two theorems. Theorem 1 Ruzsa and Szemeredi 15 If G is an n vertex graph from which one should remove at least en2 edges in order to destroy all triangles then G contains at least f e n3 triangles where f e 0. Theorem 2 Ruzsa and Szemeredi 15 Suppose S c n is a set of integers containing no 3-term arithmetic progression. Then there is a graph G V E with V 6n and E 3n S whose edges can be uniquely partitioned into n S edge disjoint triangles. Furthermore G contains no other triangles. School of Mathematics and College of Computing Georgia Institute of Technology Atlanta GA 30332. E-mail asafico@math.gatech.edu Department of Mathematics University of Haifa Haifa 31905 Israel. E-mail raphy@math.haifa.ac.il THE ELECTRONIC JOURNAL OF COMBINATORICS 16 2009 N11 1 These two theorems turned out to be two of the most influential results in extremal combinatorics. First a simple application of these two theorems gives a short proof of Roth s Theorem 14 stating that a subset of n of size en contains a 3-term arithmetic progression. The results in 15 were followed by

TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.