Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: "Skew Spectra of Oriented Graphs"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Skew Spectra of Oriented Graphs. | Skew Spectra of Oriented Graphs Bryan Shader Department of Mathematics University of Wyoming Laramie WY 82071-3036 USA email bshader@uwyo.edu Wasin So Department of Mathematics San Jose State University San Jose CA 95192-0103 USA email so@math.sjsu.edu Submitted Jul 20 2009 Accepted Nov 5 2009 Published Nov 13 2009 Mathematics Subject Classification 05C50 Abstract An oriented graph Gơ is a simple undirected graph G with an orientation Ơ which assigns to each edge a direction so that Gơ becomes a directed graph. G is called the underlying graph of Gơ and we denote by Sp G the adjacency spectrum of G. Skew-adjacency matrix S GƠ of Gơ is introduced and its spectrum Sps Gơ is called the skew-spectrum of Gơ. The relationship between Sps Gơ and Sp G is studied. In particular we prove that i Sps Gơ iSp G for some orientation Ơ if and only if G is bipartite ii Sps Gơ iSp G for any orientation Ơ if and only if G is a forest where i 1. 1 Introduction Let G be a simple graph. With respect to a labeling the adjacency matrix A G is the symmetric matrix aij where aij aji 1 if i j is an edge of G otherwise aij aji 0. The spectrum Sp G of G is defined as the spectrum of A G . Note that the definition is well defined because symmetric matrices with respect to different labelings are permutationally similar and so have same spectra. Also note that Sp G consists of only real eigenvalues because A G is real symmetric. Example 1.1. Consider the path graph P4 on 4 vertices. With respect to two different THE ELECTRONIC JOURNAL OF COMBINATORICS 16 2009 N32 1 labelings A P4 takes the form 0 1 0 0 0 0 1 0 1 0 1 0 or 0 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0 1 0 0 4 i i . And the spectrum Sp P4 is Example 1.2. Consider the star graph ST5 on 5 vertices. With respect to two different labelings A ST5 takes the form 0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 or 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 And the spectrum Sp ST5 is -2 0 3 2 . Example 1.3. Consider the cycle graph C4 on 4 .

TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.