Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
Bài giảng Giải tích 2: Chương 2.0 - Nguyễn Thị Xuân Anh
Đang chuẩn bị liên kết để tải về tài liệu:
Bài giảng Giải tích 2: Chương 2.0 - Nguyễn Thị Xuân Anh
Thục Trinh
890
37
ppt
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Bài giảng Giải tích 2: Chương 2.0 trình bày một số mặt bậc hai thường gặp như mặt Ellipsoid, mặt Paraboloid Elliptic, mặt trụ bậc 2, mặt nón bậc 2, tích phân kép – định nghĩa và cách tính. | CHƯƠNG II: TÍCH PHÂN BỘI §0: MỘT SỐ MẶT BẬC HAI THƯỜNG GẶP §1: TÍCH PHÂN KÉP Định nghĩa và Cách tính Đổi biến trong tích phân kép Ứng dụng hình học của tích phân kép §2: TÍCH PHÂN BỘI BA Định nghĩa và Cách tính Đổi biến trong tích phân bội ba Ứng dụng hình học của tích phân bội ba §0. Một số mặt bậc hai thường gặp Mặt Ellipsoid: 1. Phương trình: 2. Cách gọi tên mặt: Với phương trình trên, ta cho x = 0, y = 0, z = 0 ta đều nhận được giao tuyến của mặt với 3 mặt tọa độ làcác đường Ellipse. Tức là nếu cả 3 giao tuyến của mặt S với 3 mặt tọa độ hoặc các mặt song song với các mặt tọa độ đều là ellipse thì ta sẽ gọi mặt S là mặt Ellipsoid 3. Cách vẽ hình Vẽ 3 giao tuyến của S với 3 mặt tọa độ §0. Một số mặt bậc hai thường gặp Vẽ đường ellipse trên mặt phẳng nằm ngang z = 0 §0. Một số mặt bậc hai thường gặp trên mặt phẳng x = 0 Vẽ thêm đường ellipse §0. Một số mặt bậc hai thường gặp Vẽ mặt ellipsoid §0. Một số mặt bậc hai thường gặp x2+y2=1,z=0 x2+z2=1, y=0 y2+z2=1,x=0 trên mặt phẳng y = 0 Có thể vẽ thêm đường ellipse §0. Một số mặt bậc hai thường gặp II. Mặt Paraboloid Elliptic: 1. Phương trình : 2. Cách gọi tên mặt: Với phương trình trên, ta cho x = 0, y = 0 thì được 2 giao tuyến với 2 mặt tọa độ là 2 đường Parabol và cho z=c, c>0 ta được đường còn lại là 1 đường Ellipse. Tức là nếu 2 trong 3 giao tuyến với các mặt tọa độ hoặc các mặt song song với các mặt tọa độ là 2 Parabol, giao tuyến còn lại là 1 Ellipse thì ta gọi mặt S là Paraboloid Elliptic 3. Vẽ hình §0. MỘT SỐ MẶT BẬC HAI THƯỜNG GẶP Vẽ đường parabol y2 = z trên mặt phẳng x = 0 §0. MỘT SỐ MẶT BẬC HAI THƯỜNG GẶP Vẽ đường ellipse x2+y2 = 1 trên mặt phẳng z = 1 §0. MỘT SỐ MẶT BẬC HAI THƯỜNG GẶP Vẽ mặt parabolid x2+y2 = z §0. MỘT SỐ MẶT BẬC HAI THƯỜNG GẶP Vẽ thêm đường parabol x2 = z trên mặt phẳng y = 0 z=y2, x=0 z=x2, y=0 x2+y2=1,z=1 §0. MỘT SỐ MẶT BẬC HAI THƯỜNG GẶP III. Mặt Trụ bậc 2: Định nghĩa mặt trụ bậc 2: Mặt trụ bậc 2 là mặt tạo bởi các đường thẳng song song với 1 phương cố định và tựa lên 1 đường cong cố | CHƯƠNG II: TÍCH PHÂN BỘI §0: MỘT SỐ MẶT BẬC HAI THƯỜNG GẶP §1: TÍCH PHÂN KÉP Định nghĩa và Cách tính Đổi biến trong tích phân kép Ứng dụng hình học của tích phân kép §2: TÍCH PHÂN BỘI BA Định nghĩa và Cách tính Đổi biến trong tích phân bội ba Ứng dụng hình học của tích phân bội ba §0. Một số mặt bậc hai thường gặp Mặt Ellipsoid: 1. Phương trình: 2. Cách gọi tên mặt: Với phương trình trên, ta cho x = 0, y = 0, z = 0 ta đều nhận được giao tuyến của mặt với 3 mặt tọa độ làcác đường Ellipse. Tức là nếu cả 3 giao tuyến của mặt S với 3 mặt tọa độ hoặc các mặt song song với các mặt tọa độ đều là ellipse thì ta sẽ gọi mặt S là mặt Ellipsoid 3. Cách vẽ hình Vẽ 3 giao tuyến của S với 3 mặt tọa độ §0. Một số mặt bậc hai thường gặp Vẽ đường ellipse trên mặt phẳng nằm ngang z = 0 §0. Một số mặt bậc hai thường gặp trên mặt phẳng x = 0 Vẽ thêm đường ellipse §0. Một số mặt bậc hai thường gặp Vẽ mặt ellipsoid §0. Một số mặt bậc hai thường gặp x2+y2=1,z=0 x2+z2=1, y=0 y2+z2=1,x=0 trên mặt phẳng y = 0 .
TÀI LIỆU LIÊN QUAN
Bài giảng Giải tích 2: Chương 2 - Trần Ngọc Diễm (Phần 2)
Bài giảng Giải tích 2: Chương 2 - Hoàng Đức Thắng
Bài giảng Giải tích 2: Chương 2 - Trần Ngọc Diễm (Phần 1)
Ebook Thiết kế bài giảng Giải tích 12 (Chương trình nâng cao): Phần 2
Bài giảng Giải tích 2: Chương 3 - Trần Ngọc Diễm (Phần 2)
Bài giảng Giải tích 12 – Tiết 37: Ôn tập chương 2 (Tiết 2)
Bài giảng Giải tích 2 - Chương 3: Tích phân đường (Phần 2)
Bài giảng Giải tích hàm nhiều biến: Chương 2 - Nguyễn Thị Xuân Anh
Bài giảng Giải tích 2 - Chương 2: Tích phân bội
Bài giảng Giải tích 2 - Chương 4: Tích phân mặt
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.