Đang chuẩn bị liên kết để tải về tài liệu:
Đề thi chọn HSG cấp tỉnh môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Ninh

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Các bạn cùng tham khảo Đề thi chọn HSG cấp tỉnh môn Toán lớp 12 năm 2017-2018 - Sở GD&ĐT Quảng Ninh tư liệu này sẽ giúp các bạn ôn tập lại kiến thức đã học, có cơ hội đánh giá lại năng lực của mình trước kỳ thi học sinh giỏi sắp tới | SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH QUẢNG NINH KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH THPT NĂM 2016 Môn thi : TOÁN – Bảng A Ngày thi : 03/12/2016 Thời gian làm bài : 180 phút , không kể thời gian giao đề ĐỀ THI CHÍNH THỨC (Đề thi này có 01 trang) Bài 1(3 điểm) : Cho hàm số : y = (2 – m)x3 – 6mx2 + 9(2 – m)x – 2 có đồ thị (Cm), với m là tham số. Tìm m để (Cm) cắt đường thẳng d : y = –2 tại ba điểm phân biệt sao cho diện tích tam giác tạo bởi gốc tạo độ O và hai giao điểm không nằm trên trục tung là 13 Bài 2(3 điểm) : Chứng minh : tan142030’ = 2 2 3 6 Bài 3(3 điểm) : Giải phương trình: 1 x 2 2 x2 1 2 x 2 x2 1 1 2 x Bài 4(3 điểm) : Một học sinh tham dự kỳ thi môn Toán. Học sinh đó phải làm một đề thi trắc nghiệm khách quan gồm 10 câu. Mỗi câu có 4 đáp án khác nhau, trong đó chỉ có một đáp án đúng. Học sinh sẽ được chấm đỗ nếu trả lời đúng ít nhất 6 câu. Vì học sinh đó không học bài nên chỉ chọn ngẫu nhiên đáp án trong cả 10 câu hỏi. Tính xác suất để học sinh thi đỗ. Bài 5(6 điểm) : 1. Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có ba góc đều nhọn. Đường thẳng chứa trung tuyến kẻ từ B và đường thẳng AC lần lượt có phương trình : 3x + 5y – 8 = 0 ; x – y – 4 = 0. Đường thẳng qua B và vuông góc với AC cắt đường tròn ngoại tiếp tam giác ABC tại điểm thứ hai là D(4; –2). Tính diện tích tam giác ABC. 2. Cho hình chóp đều S.ABCD, có đáy là hình vuông ABCD với độ dài cạnh bằng a và tâm là O. Gọi M, N lần lượt là trung điểm của SA và BC. Biết góc giữa MN và mặt phẳng (ABCD) bằng 600. Tính cosin của góc giữa MN và mặt phẳng (SBD). Bài 6(2 điểm) : Cho x, y, z là các số thực không âm thỏa mãn : 5( x y z ) 6( xy yz zx) 2 Tìm giá trị lớn nhất của biểu thức : P = 2 2 2( x y z ) ( y 2 z 2 ) ------------------------- Hết -------------------------- Thí sinh không được sử dụng tài liệu và máy tính cầm tay Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh : . . . . . . . . . . . . . . . . . . . . . . Số báo danh: . . . . . . . .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.