Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Tài Liệu Phổ Thông
Ôn thi ĐH-CĐ
Chuyên đề luyện thi ĐH giải phương trình lượng giác
Đang chuẩn bị liên kết để tải về tài liệu:
Chuyên đề luyện thi ĐH giải phương trình lượng giác
Ðức Tâm
193
5
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Trong các đề thi đại học những năm gần đây , đa số các bài toán về giải phương trình lượng giác đều rơi vào một trong hai dạng :phương trình đưa về dạng tích và phương trình chứa ẩn ở mẫu . Nhằm giúp các bạn ôn thi có kết quả tốt , bài viết này tôi xin giới thiệu một số kĩ năng quan trọng của dạng toán đó | CHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC - LUỢNG giác MỘT SỐ KĨ NÃNG GIẢI PHUƠNG trình LUỢNG giác Trong các đề thi đại học những năm gần đây đa số các bài toán về giải phương trình lượng giác đều rơi vào một trong hai dạng phương trình đưa về dạng tích và phương trình chứa ẩn ở mẫu . Nhằm giúp các bạn ôn thi có kết quả tốt bài viết này tôi xin giới thiệu một số kĩ năng quan trọng của dạng toán đó i.pHuơng trìnH Đua về dạng TíCh 1 Phương trình sử dụng các công thức biến đổi lượng giác công thức biến tích thành tổng tổng thành tích công thức hạ bậc . Bài 1. Giải phương trình sinx sin2x sin3x sin4x sin5x sin6x 0 1 Giải 1 sin 6x sin x sin 5x sin 2x sin 4x sin 3x 0 5x . x 3 cos cos 2 2 3x cos 2 n 7x 2 sin 2 7x 3x 0 4sin cos 2cosx 1 0 sin 0 2 3x cos 0 2 2cosx 1 0 k2 x _ 7 k2 x k e Z 33 2 x k2 3 Lưu ý Khi ghép cặp để ra tổng hoặc hiệu sin hoặc cos cần để ý đến góc để sao cho tổng hoặc hiệu các góc bằng nhau Bài 2 . Giải phương trình cos3xcos3x - sin 3x sin3 x 2 2 2 ----- - - 8 Giải 2 cos2x cos4x cos2x - sin2 x cos2x - cos4x 2 - 3 2 8 cos4x cos2x sin2 x cos2x cos2x - sin2 x 2-3 2 2-3 2 7 cos4x cos 2x 7 7 4 4 4cos4x 2 1 cos4x 2-3ạ 2 cos4x x 7 k G Z Lưu ý Việc khéo léo sử dụng công thức biến tích thành tổng có thể giúp ta tránh được việc sử dụng công thức nhân 3 Bài 3 . Giải phương trình 2cos2 - 2x 3cos4x 4cos2x -1 3 Giải CHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC - LUỢNG giác 3 1 cos 1 - 4x 1 a 3cos4x 4cos2x -1 sin 4x a 3cos4x 2 2cos2x -1 1 . . V3 sin 4x cos4x cos2x cos 4x - cos2x 2 2 1 6 x k 12 k e Z k x 7 - 36 3 1 cos 2x sin 2x 2 cos x sin x cos x 1 - cos 2x sin 2x 2 sin x sin x cos x 2 Phương trình sử dụng một số biến đổi khác Việc đưa phương trình về dạng tích điều quan trọng nhất vẫn là làm sao để phát hiện ra nhân tử chung nhanh nhất sau đây là một số biến đổi có thể giúp ta làm được điều đó sin2x 1 - cosx 1 cosx cos2x 1 - sinx 1 sinx cos2x cos x - sin x cos x sin x 1 sin2x sinx cosx 2 1 - sin 2x sin x - cos x 2 XTX . . sinx cosx 1 tan x --- - cos x ự2 sin 1 x 1 sin x cos x 1 4 Bài 4 . Giải .
TÀI LIỆU LIÊN QUAN
Luyện thi ĐH môn Toán 2015: Phương trình Logarith-phần 1 - Thầy Đặng Việt Hùng
Luyện thi ĐH môn Toán 2015: Phương trình Logarith-phần 2 - Thầy Đặng Việt Hùng
Luyện thi ĐH môn Toán 2015: Phương trình Logarith-phần 3 - Thầy Đặng Việt Hùng
Luyện thi ĐH môn Toán 2015: Phương trình Logarith-phần 4 - Thầy Đặng Việt Hùng
Luyện thi ĐH môn Toán 2015: Phương trình Logarith-phần 5 - Thầy Đặng Việt Hùng
Luyện thi ĐH môn Toán 2015: Phương trình Logarith-phần 6 - Thầy Đặng Việt Hùng
Luyện thi ĐH môn Toán 2015: Phương trình Logarith-phần 7 - Thầy Đặng Việt Hùng
Chuyên đề luyện thi ĐH giải phương trình lượng giác
Luyện thi ĐH môn Toán 2015: Công thức Logarith-phần 1 - Thầy Đặng Việt Hùng
Luyện thi ĐH môn Toán 2015: Công thức Logarith-phần 2 - Thầy Đặng Việt Hùng
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.