Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p1
Đang chuẩn bị liên kết để tải về tài liệu:
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p1
Gia Cẩn
145
5
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Giải tích trong miền D sao cho u = Ref hoặc u = Imf. Chứng minh Do h m u điều ho trong miền D đơn liên nên dạng vi phân ω = − u ′y dx + u ′ dy xl dạng vi phân đúng. Suy ra tích phân của nó không phụ thuộc v o đ−ờng lấy tích phân. Cố định a ∈ D với mọi z ∈ D, h m v(x, y) = ∫ − u ′y dx + u ′x dy | Giáo trình phân tích các tính chât của hàm điêu hòa có đạo hàm riêng trong tập số phức Chứng minh Do hàm u điều hoà trong miền D đơn liên nên dạng vi phân I - u ydx u xdy là dạng vi phân đúng. Suy ra tích phân của nó không phụ thuộc vào đường lấy tích phân. Cố định a e D với mọi z e D hàm v x y J - u ydx u xdy 3.7.2 a thuộc lớp C2 trong miền D và thoả mãn điều kiện Cauchy - Riemann v x - uy và v y u x Suy ra hàm phức f z u x y iv x y là giải tích trong miền D và u Ref. Lập luận tương tự để tìm hàm f z sao cho u Imf. Ví dụ Cho hàm u x2 - y2 tìm hàm w f z giải tích sao cho u Ref Kiểm tra trực tiếp hàm u là hàm điều hoà u x 2x vy uy - 2y - v x và Au x uXy 0 Tìm hàm v điều hoà liên hợp với hàm u v x y J v xdx J 2ydx 2xy ọ y Đạo hàm theo biến y v y 2x ọ y 2x ọ y 0 ọ y C Suy ra hàm phức f z x2 - y2 i 2xy C là hàm giải tích cần tìm. Hê quả 1 Hàm điều hoà có đạo hàm riêng mọi cấ p và các đạo hàm riêng của nó cũng là hàm điều hoà. Chứng minh Theo các định lý ở trên u Ref với f là hàm giải tích. Khi đó đạo hàm các cấp của hàm f cũng là hàm giải tích và có phần thực phần ảo là các đạo hàm riêng của hàm u. Hê quả 2 Hàm điều hoà đạt trị trung bình tại tâm của hình tròn nằm gọn trong miền D. V R 0 B a R c D u a -1 f u a Reil dt 3.7.3 2n J0 Chứng minh Tương tự như trên u Ref với f là hàm giải tích. Theo công thức 3.6.1 với n 0 u a Ref a -1 f Re f a Reil dt 1 2n J0 Hê quả 3 Hàm u điều hoà đạt trị lớn nhất trị bé nhất trên 3D. ương 3. Tích Phân Phức Chứng minh Sử dụng công thức 3.7.3 và lập luận tương tự như chứng minh nguyên lý cực đại. Hê quả 4 Hàm điều hoà và bị chặn trên toàn tập số phức là hàm hằng. Chứng minh Tương tự như trên u Ref với f là hàm giải tích. Từ giả thiết hàm u bị chặn và công thức 3.7.4 dưới đây suy ra hàm f bị chặn. Theo định lý Liouville suy ra hàm f là hàm hằng. Suy ra hàm u là hàm hằng. Công thức Schwartz Cho f z u x y iv x y giải tích trên miền D và B 0 R c D. V a e B 0 R f a -1- 2n 2 n 0 IR t a dt iv 0 Re1.t - a 3.7.4 Chứng minh Với mọi a e B 0 R 2n f a .
TÀI LIỆU LIÊN QUAN
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p1
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p2
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p3
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p4
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p5
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p6
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p7
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p8
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p9
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p10
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.