Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p2
Đang chuẩn bị liên kết để tải về tài liệu:
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p2
Ngọc Lan
95
5
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Hệ quả 1 Cho h m f giải tích trên miền D. Kí hiệu Z(f) = {z ∈ D : f(z) = 0}. Khi đó Z(f) = D hoặc Z(f) có không quá đếm được.Với h m g(z) giải tích trong lân cận điểm a v g(a) = cm ≠ 0. Do đó ∃ ε 0 : ∀ z ∈ B(a, ε), g(z) ≠ 0 Suy ra ∀ zn ∈ B(a, ε), f(zn) = (zn - a)mg(zn) ≠ 0! Điều n y mâu thuẫn với giả thiết. Vậy m(a) = + ∞ . Tức l ∀ z ∈ B(a, R), f(z) | ương 4. Chuỗi Hàm Phức Và Thặng Dư 3 ỗ 0 V n N V z e D z - a ỗ un z - un a 3N Suy ra V z e D z - a ỗ S z - S a S z - Sn z XI Un z - Un a l S a - Sn a e k 0 Vậy hàm S z liên tục trên miền D. I 4.1.3 2. Tích phán từng từ Nếu V n G z un z liên tục trên đường cong r trơn từng khúc D nằm gọn trong miền D và X un z S z thì hàm S z cũng khả tích trên đường cong r. n 0 A r A X un z dz X jun z dz n 0 n 0 Ỳ r J Chứng minh Theo tính chất 1. hàm S z liên tục và r trơn từng khúc nên khả tích trên r. b Kí hiệu s T j I y t I dt. Do tính hội tụ đều a V 0 3 N 0 V n N V z e r S z - Sn z s T Suy ra n jS z dz - XjUn z dz j S z - Sn z dz r I k 0 r r D 3. Đao hàm từng từ Nếu V n e z un z giải tích trong miền D và X un z S z thì n 0 hàm S z cũng giải tích trong miền D. w D V k e z X u nk z S k z n 0 4.1.4 Chứng minh Với mọi z e D 3 B z R c D. Kí hiệu r dB và G D - B z R 2 khi đó un Z G S Z V n e z yZ giải tích trong G và X z - z n 0 Sử dụng công thức 3.4.3 và công thức 4.1.3 S z X un z X ju. íZ dZ -L j-S ldZ n 0 2ni n 0 r z - z 2ni r z - z z-z z-z r Theo định lý về tích phân Cauchy hàm S z giải tích trong miền D và do đó có đạo hàm mọi cấp trên miền D. Kết hợp công thức 3.5.3 và công thức 4.1.3 V k z S k z A r S z 2nij Z- z k 1 dZ ễ Ồ- h ZL s n 02ni r Z- z k 1 dz X unk z n 0 Chương 4. Chuỗi Hàm Phức Và Thặng 4. Xác đinh trên biên Nếu V n e z un z liên tục trên miền D giải tích trong miền D 3d D và 2 Un z S z thì 2 Un z S z . n 0 n 0 Chứng minh Theo nguyên lý cực đại nn V z e D 3 a e dD S z - 2uk z S a - 2uk a w k 0 k 0 Đ2. Chuỗi luỹ thừa phức Chuỗi hàm phức 2 cn z - a n c0 c1 z - a . cn z - a n . n 0 gọi là chuỗi luỹ thừa tâm tại điểm a. 4.2.1 Đinh lý Abel Nếu chuỗi luỹ thừa hội tụ tại điểm z0 a thì nó hội tụ tuyệt đối và đều trong mọi hình tròn B a p với p z0 - a . Chứng minh Do chuỗi số phức 2 cn z0 - a n hội tụ nên n 0 lim cn z0 - a n 0. Suy ra n 3 M 0 sao cho V n e z cn z0 - a n M Với mọi z e B a p đặt q z - a z0 - a 1 ta có n z - a V n e z V z e B a p cn z - a n cn z0 - a n z0 - a .
TÀI LIỆU LIÊN QUAN
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p1
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p2
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p3
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p4
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p5
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p6
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p7
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p8
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p9
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p10
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.