Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo khoa học: "Relieving The Data Acquisition Bottleneck In Word Sense Disambiguation"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Supervised learning methods for WSD yield better performance than unsupervised methods. Yet the availability of clean training data for the former is still a severe challenge. In this paper, we present an unsupervised bootstrapping approach for WSD which exploits huge amounts of automatically generated noisy data for training within a supervised learning framework. The method is evaluated using the 29 nouns in the English Lexical Sample task of SENSEVAL2. Our algorithm does as well as supervised algorithms on 31% of this test set, which is an improvement of 11% (absolute) over state-of-the-art bootstrapping WSD algorithms. We identify seven different.

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.