Bài 2: Cho biểu thức: A = ( b2 + c2 - a2)2 - 4b2c2 a) Phân tích biểu thức A thành nhân tử. b) Chứng minh rằng : Nếu a, b, c là độ dài các cạnh của một tam giác thì A | ĐỀ THI CHỌN HSG LỚP 8 (lần 2) Năm học 2009 - 2010 Bài 1: Cho biểu thức M = : a) Rút gọn M b)Tính giá trị của M khi = Bài 2: Cho biểu thức: A = ( b2 + c2 - a2)2 - 4b2c2 a) Phân tích biểu thức A thành nhân tử. b) Chứng minh rằng : Nếu a, b, c là độ dài các cạnh của một tam giác thì A 0 ( BĐT trong tam giác) (b+c +a) >0 ( BĐT trong tam giác) (b-c -a) 0 ( BĐT trong tam giác) Vậy A0 nên B = EMBED 3 Dấu ''='' xãy ra x = 0 Vậy GTLN của B là 3 x = 0 Bài 4: a) Do AB//CD nên ta có: = (1) Do BF//AD nên ta có: = (2) Từ (1) và (2) EMBED Hay AE2 = EF. EG b). Chứng minh rằng khi đường thẳng a quay quanh A thay đổi thì tích không đổi. Từ (1) và (2) EMBED Hay = = ab (không đổi) Bài 5: Từ GT (x2 -yz)y(1-xz) = x(1- yz)(y2 - xz) x2y- x3yz-y2z+xy2z2 = xy2 -x2z - xy3z +x2yz2 x2y- x3yz - y2z+ xy2z2 - xy2 +x2z + xy3z - x2yz2 = 0 xy(x-y) +xyz(yz +y2- xz - x2)+z(x2 - y2) = 0 xy(x-y) - xyz(x -y)(x + y +z)+z(x - y)(x+y) = 0 (x -y) = 0 Do x - y 0 nên xy + xz + yz - xyz ( x + y + z) = 0 Hay xy + xz + yz = xyz ( x + y + z) (đpcm)