Corpus-based grammar induction generally relies on hand-parsed training data to learn the structure of the language. Unfortunately, the cost of building large annotated corpora is prohibitively expensive. This work aims to improve the induction strategy when there are few labels in the training data. We show that the most informative linguistic constituents are the higher nodes in the parse trees, typically denoting complex noun phrases and sentential clauses. They account for only 20% of all constituents. .