ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2009 – 2010 - SỞ GD&ĐT NGHỆ AN

Câu I (3,0 điểm). Cho biểu thức A = . 1) Nêu điều kiện xác định và rút gọn biểu thức A. 2) Tính giá trị của biểu thức A khi x = . 3) Tìm tất cả các giá trị của x để A | SỞ GD&ĐT NGHỆ AN KÌ THI TUYỂN SINH VÀO LỚP 10 THPT Đề chính thức NĂM HỌC 2009 – 2010 Môn thi: TOÁN Thời gian: 120 phút (không kể thời gian giao đề). Câu I (3,0 điểm). Cho biểu thức A = . 1) Nêu điều kiện xác định và rút gọn biểu thức A. 2) Tính giá trị của biểu thức A khi x = . 3) Tìm tất cả các giá trị của x để A < 1. Câu II (2,5 điểm). Cho phương trình bậc hai ẩn x, với tham số m: 2x2 – (m + 3)x + m = 0 (1). 1) Giải phương trình (1) khi m = 2. 2) Tìm các giá trị của tham số m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn x1 + x2 = x1x2. 3) Gọi x1, x2 là hai nghiệm của phương trình (1). Tìm giá trị nhỏ nhất của biểu thức: P = . Câu III (1,5 điểm). Một thửa ruộng hình chữ nhật có chiều rộng ngắn hơn chiều dài 45m. Tính diện tích thửa ruộng, biết rằng nếu chiều dài giảm 2 lần và chiều rộng tăng 3 lần thì chu vi thửa ruộng không đổi. Câu IV (3,5 điểm) Cho đường tròn (O; R), đường kính AB cố định và CD là một đường kính thay đổi không trùng với AB. Tiếp tuyến của đường tròn (O; R) tại B cắt các đường thẳng AC và AD lần lượt tại E và F. 1) Chứng minh rằng = 4R2. 2) Chứng minh rằng tứ giác CEFD nội tiếp được trong đường tròn. 3) Gọi I là tâm đường tròn ngoại tiếp tứ giác CEFD. Chứng minh rằng tâm I luôn nằm trên một đường thẳng cố định. (chứng minh IK = AB không đổi nên cách EF một khoảng bằng R).

Bấm vào đây để xem trước nội dung
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.