Some properties of the first eigenvalue of the p(x)-laplacian on riemannian manifolds

The main result of the present paper establishes a stability property of the first eigenvalue of the associated problem which deals with the p(x)-Laplacian on Riemannian manifolds with Dirichlet boundary condition. | Turk J Math 33 (2009) , 351 – 358. ¨ ITAK ˙ c TUB doi: Some properties of the first eigenvalue of the p(x)-laplacian on riemannian manifolds R. A. Mashiyev, G. Alisoy and S. Ogras Abstract The main result of the present paper establishes a stability property of the first eigenvalue of the associated problem which deals with the p(x) -Laplacian on Riemannian manifolds with Dirichlet boundary condition. Key Words: Variable exponent Lebesgue and Sobolev spaces; first eigenvalue; Riemannian manifolds; p(x) -Laplacian. 1. Introduction Over the last decades the variable exponent Lebesgue spaces Lp(x) and the corresponding Sobolev space W 1,p(x) have been a subject of active research stimulated by development of the studies of problems in elasticity, fluid dynamics, calculus of variations, and differential equations with p(x)-growth (see [2], [3], [12]). We refer the reader to [5], [7], [8] for fundamental properties of these spaces. The p(x)-Laplacian equations related to eigenvalue problems have been studied in [6], [9], [10], [11]. Let G ⊂ RN (N ≥ 2 ) is a bounded domain with a smooth boundary. For measurable function p(x) we denote the variable exponent Lebesgue space by Lp(x) (G) = ⎧ ⎨ ⎩ |u (x)| u measurable real functions : p(x) dx 0 : dx ≤ 1 , ⎩ ⎭ δ G where 1 1, then the spaces Lp(x) (G) , W 1,p(x) (G) and W0 spaces (see [5], [7]). Proposition 1. ([5], [7] ). Denote p(x) (u) |u (x)| = p(x) dx, G and 1,p(x) (u) := |∇u (x)| p(x) (∇u) = p(x) dx, ∀u, ∇u ∈ Lp(x) (G) , G then we have p− p+ min |u|p(x) , |u|p(x) ≤ p− p+ min |∇u|p(x) , |∇u|p(x) ≤ p(x) p− p+ (u) ≤ max |u|p(x) , |u|p(x) , 1,p(x) p− p+ (u) ≤ max |∇u|p(x) , |∇u|p(x) . M be a compact Riemannian manifold with dim M = m, and p(x) is nonhomegenous p(x) p(x)−2 Laplacian acting on functions on M, where p(x) u = div |∇u| ∇u , and 1 0 ; that is, Bε = {x ∈ M : d (x, M ∗) 0. p(x)−2 When Bε = ∅, that is, Ωε = M¨, u runs over W 1,p(x)

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.