Đề thi học sinh giỏi cấp tỉnh môn Toán lớp 9 năm 2008 - 2009

Tài liệu tham khảo Đề thi học sinh giỏi cấp tỉnh môn Toán ớp 9 | SỞ GIÁO DỤC - ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI LỚP 9 CẤP TỈNH TỈNH BÀ RỊA - VŨNG TÀU NĂM HỌC 2008 – 2009 ---------------------------------- ------------------------------ Ngày thi: 04 tháng 3 năm 2009 ĐỀ CHÍNH THỨC Môn thi: TOÁN Thời gian làm bài 150 phút Bài 1 (6 điểm) 1) Giải phương trình: 2) Tìm x, y để biểu thức F đạt giá trị nhỏ nhất: Bài 2 (4 điểm) Tìm số tự nhiên có 3 chữ số thỏa: Bài 3 (4 điểm) Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Đường tròn đường kính AH cắt AB, AC lần lượt tại E, F. Chứng minh rằng: . Bài 4 (3 điểm) Cho nửa đường tròn tâm O, đường kính AB = 2R và M là một điểm thay đổi trên nửa đường tròn (khác A và B). Tiếp tuyến của (O) tại M cắt các tiếp tuyến tại A và B của đường tròn (O) tại các điểm C và D. Tìm giá trị nhỏ nhất của tổng diện tích hai tam giác ACM và BDM. Bài 5 ( 3 điểm) Cho 100 số tự nhiên thỏa mãn điều kiện: Chứng minh rằng trong 100 số tự nhiên đó, tồn tại hai số bằng nhau. ----------------------------------------------------- HẾT ------------------------------------------------------ Họ và tên thí sinh: Số báo danh: Chữ ký giám thị 1: Chữ ký giám thị 2: SỞ GIÁO DỤC-ĐÀO TẠO KỲ THI HỌC SINH GIỎI LỚP 9 CẤP TỈNH TỈNH BÀ RỊA VŨNG – TÀU NĂM HỌC 2008 – 2009 ---------------------------------- ---------------------------- HƯỚNG DẪN CHẤM MÔN TOÁN ĐỀ CHÍNH THỨC (Hướng dẫn này gồm có 02 trang) Bài 1 (6 điểm) Câu 1 (3 điểm): Cách 1: Pt . Cách 2: +/ Nếu x>5: VT = +/ Nếu : Tương tự VT < VP. +/ Khi x = 5 thì VT = VP, nên x = 5 là nghiệm của pt. Câu 2 (3 điểm) F = = . Ta thấy với mọi x, y thì . Nên . Bài 2 (4 điểm) Ta có: Từ (1) và (2) ta có 99(a-c)=4n – 5 Mặt khác: . Từ (3) và (4) suy ra n = 26. Vậy . Bài 3 (4 điểm) Trong tam giác vuông ABC ta có: = và (1) Trong tam giác vuông ABH ta có: Trong tam giác vuông ACH ta có: Từ (2) và (3) ta có: Kết hợp (1) và (4) ta được: Tứ giác AEHF là hình chữ nhật nên AH = EF nên suy ra . Bài 4 (3 điểm) Ta có: (1) Kẻ MH vuông góc với AB thì: (2) Từ (1) và (2) suy ra: Vậy giá trị nhỏ nhất của tổng diện tích hai tam giác ACM và BDM là , đạt được khi M là điểm chính giữa của cung AB. Bài 5 (3 điểm) Ta có kết qủa quen thuộc sau đây: Thật vậy: Từ , suy ra: (*) Gỉa sử trong 100 số tự nhiện đã cho không có hai số nào bằng nhau. Không mất tính tổng quát, giả sử: Thế thì: EMBED (áp dụng (*)) Kết qủa này trái với giả thiết. Vậy tồn tại bằng nhau trong 100 số đã cho. LƯU Ý: - Trên đây là hướng dẫn tóm tắt cách giải. Tổ chấm cần thống nhất thang điểm chi tiết đến 0,25 hoặc 0,5. - Các cách giải khác đúng (trong phạm vi chương trình THCS) vẫn cho điểm.

Bấm vào đây để xem trước nội dung
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.