Jossey-Bass Teacher - Math Wise Phần 10

Dòng 1 sẽ đáp ứng phép toán, chỉ cần dòng 1 o, và do đó này M ¨ bius dải chỉ có bên. (b) cắt o xuống các kết quả trung trong một dải "duy nhất" mới hai lần như lâu dài và 1 / 2 rộng hơn nữa, các dải mới là không-M. | 3. 1 2-Phase Mobius Strip a The line will meet itself there is just 1 line and therefore this Mobius strip has only side. b Cutting down the middle results in a single new strip twice as long and 1 2 as wide further the new strip is non-Mobius. c When cut down the middle the new non-Mobius strip splits into 2 strips that are linked together. 4. 1 3-Phase Mobius Strip a The continuous line will miss itself on the first pass which is when you have gone all the way around the paper. But it will meet itself on the secondpass. b When cut 1 3 of the way in the result will be a small fat loop interlinked with a longer narrow loop. The narrow loop is non-Mobius and the fat loop is Mobius. Further the fat loop is the center of the original Mobius strip and the narrow one is its outside edge. 5. Extension 1 Mobius strips are in common use as conveyor and other belts because they will theoretically last twice as long as regular belts. The reasoning for this is that the wear is distributed evenly to all portions of a Mobius belt whereas a regular belt wears only on one side. Puzzlers with Paper 387 Chapter 100 Create a Tessellation Grades 4-8 3 Total group activity 3 Cooperative activity 3 Independent activity 3 Concrete manipulative activity 3 Visual pictorial activity 3 Abstract procedure Why Do It This project allows students to explore regular tessellations and then create M. C. Escher-type tessellations of their own. M. C. Escher a Dutch artist who lived from 1898 to 1972 created drawings of interlocking geometric patterns or tessellations . You Will Need Each student will require a large sheet of light-colored drawing or construction paper that is fairly stiff a small square of tagboard about file-folder weight measuring 2-1 2 inches on a side tape pencils scissors rulers and colored markers. Some examples of Escher-type tessellations or reproductions of Escher s work may also prove to be helpful. You can find examples by going online to http and typing

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.