Đang chuẩn bị liên kết để tải về tài liệu:
Đề thi tuyển sinh vào lớp 10 môn Toán - Đề chính thức
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Tham khảo tài liệu đề thi tuyển sinh vào lớp 10 môn toán - đề chính thức , tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | SỞ GD&ĐT NGHỆ AN KỲ THI TUYỂN SINH VÀO LỚP 10 TRƯỜNG THPT CHUYÊN PHAN BỘI CHÂU NĂM HỌC 2010 - 2011 Môn thi: TOÁN Thời gian: 150 phút (không kể thời gian giao đề) Câu 1. (7,0 điểm) a) Giải phương trình: b) Giải hệ phương trình: Câu 2. (2,0 điểm) Tìm tất cả các số nguyên n để là số chính phương. Câu 3. (4,0 điểm). Cho tam giác ABC và AD là đường phân giác trong. Trên đoạn AD lấy hai điểm M, N (M, N khác A và D) sao cho . Đường thẳng BM cắt đường tròn ngoại tiếp tam giác ACM tại điểm thứ hai là E. Đường thẳng CN cắt đường tròn ngoại tiếp tam giác ABN tại điểm thứ hai là F. Chứng minh ba điểm A, E, F thẳng hàng. Câu 4. (3,0 điểm) Cho tam giác đều ABC nội tiếp đường tròn (O; R), M là một điểm bất kì trên cung nhỏ BC (M khác B, C). Đường tròn (O’; R’) tiếp xúc trong với đường tròn (O; R) tại điểm M (với R’ < R). Các đoạn thẳng MA, MB, MC lần lượt cắt đường tròn (O’; R’) tại điểm thứ hai là D, E, F. Từ A, B, C kẻ các tiếp tuyến AI, BJ, CK với đường tròn (O’; R’) trong đó I, J, K là các tiếp điểm. Chứng minh DE song song với AB và AI = BJ + CK. Câu 5 (4,0 điểm) a) Cho các số thực không âm a, b, c thỏa mãn: . Tìm giá trị lớn nhất của biểu thức: P = . b) Trong mặt phẳng cho 2010 điểm phân biệt sao cho không có 3 điểm nào thẳng hàng và không có 4 điểm nào cùng nằm trên một đường tròn. Chứng minh rằng trong 2010 điểm đã cho, có thể dựng được một đường tròn đi qua 3 điểm, chứa 1000 điểm và không chứa 1007 điểm còn lại. --------------------------- Hết ---------------------------- Họ và tên thí sinh: Số báo danh:. SỞ GD&ĐT NGHỆ AN KỲ THI TUYỂN SINH VÀO LỚP 10 TRƯỜNG THPT CHUYÊN PHAN BỘI CHÂU NĂM HỌC 2010 - 2011 HƯỚNG DẪN VÀ BIỂU ĐIỂM CHẤM ĐỀ CHÍNH THỨC (Hướng dẫn và biểu điểm chấm gồm 03 trang) Môn: TOÁN ---------------------------------------------- Ta có ( do (1) ) (2) Tương tự (3) Từ (2), (3) suy ra Ta chứng minh được kết quả MA = MB +MC Do vậy = 1, từ đó AI = BJ + CK Suy ra Do dó P Dấu bằng xảy ra khi hoặc , và các hoán vị. Chú ý: Học sinh giải theo cách khác nếu đúng vẫn cho điểm tối đa.