Luyện thi ĐH môn Toán 2015: Sự biến thiên của hàm số - Thầy Đặng Việt Hùng

Tài liệu luyện thi ĐH môn Toán 2015 về "Sự biến thiên của hàm số" cung cấp kiến thức lý thuyết và 1 số bài tập ví dụ có kèm theo hướng dẫn giải. tài liệu sau để ôn tập và chuẩn bị cho kỳ thi Đại học 2015 cũng như các kỳ thi Đại học sau này. | Khóa h c LT H môn Toán 2015 – Th y NG VI T HÙNG Facebook: LyHung95 S BI N THIÊN C A HÀM S Th y ng Vi t Hùng Ki n th c cơ b n Gi s hàm s y = f ( x ) có t p xác • Hàm s f nh D. ng bi n trên D ⇔ y′ ≥ 0, ∀x ∈ D và y′ = 0 ch x y ra t i m t s h u h n i m thu c D. • Hàm s f ngh ch bi n trên D ⇔ y′ ≤ 0, ∀x ∈ D và y′ = 0 ch x y ra t i m t s h u h n i m thu c D. • N u y ' = ax 2 + bx + c (a ≠ 0) thì: a > 0 + y ' ≥ 0, ∀x ∈ R ⇔ ∆ ≤ 0 a 0 thì g( x ) có hai nghi m x1 , x2 và trong kho ng hai nghi m thì g( x ) khác d u v i a, ngoài kho ng hai nghi m thì g( x ) cùng d u v i a. • So sánh các nghi m x1 , x2 c a tam th c b c hai g( x ) = ax 2 + bx + c v i s 0: ∆ ≥ 0 ∆ ≥ 0 + x1 ≤ x2 0 + 0 0 + x1 0 • g( x ) ≤ m, ∀x ∈ (a; b) ⇔ max g( x ) ≤ m ; ( a;b ) g( x ) ≥ m, ∀x ∈ (a; b) ⇔ min g( x ) ≥ m ( a;b ) B. M t s d ng câu h i thư ng g p 1. Tìm i u ki n hàm s y = f ( x ) ơn i u trên t p xác • Hàm s f nh (ho c trên t ng kho ng xác nh). ng bi n trên D ⇔ y′ ≥ 0, ∀x ∈ D và y′ = 0 ch x y ra t i m t s h u h n i m thu c D. • Hàm s f ngh ch bi n trên D ⇔ y′ ≤ 0, ∀x ∈ D và y′ = 0 ch x y ra t i m t s h u h n i m thu c D. • N u y ' = ax 2 + bx + c (a ≠ 0) thì: a > 0 + y ' ≥ 0, ∀x ∈ R ⇔ ∆ ≤ 0 a < 0 + y ' ≤ 0, ∀x ∈ R ⇔ ∆ ≤ 0 2. Tìm i u ki n hàm s y = f ( x ) = ax 3 + bx 2 + cx + d ơn i u trên kho ng (a ; b ) . Ta có: y′ = f ′( x ) = 3ax 2 + 2bx + c . a) Hàm s f (a ; b ) . ng bi n trên (a ; b ) ⇔ y′ ≥ 0, ∀x ∈ (a ; b ) và y′ = 0 ch x y ra t i m t s h u h n i m thu c Trư ng h p 1: • N u b t phương trình f ′( x ) ≥ 0 ⇔ h(m) ≥ g( x ) (*) (a ; b ) thì f ng bi n trên (a ; b ) ⇔ h(m) ≥ max g( x ) (**) (a ; b ) • N u b t phương trình f ′( x ) ≥ 0 ⇔ h(m) ≤ g( x ) thì f ng bi n trên (a ; b ) ⇔ h(m) ≤ min g( x ) t t = x − a . .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
24    21    1    30-11-2024
272    23    1    30-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.