Master's thesis of Engineering: An historical based adaptation mechanism for BDI agents

One of the limitations of the BDI (Belief-Desire-Intention) model is the lack of any explicit mechanisms within the architecture to be able to learn. In particular, BDI agents do not possess the ability to adapt based on past experience. This is important in dynamic environments as they can change, causing previously successful methods for achieving goals to become inefficient or ineffective. This theis present a model in which learning, analogous reasoning, data pruning and learner accuracy evaluation can be utilised by a BDI agent and verify this model experimentally using Inductive and Statistical learning. |

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.