Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Công Nghệ Thông Tin
Kỹ thuật lập trình
Điều khiển robot Pioneer P3-DX bằng tiếng nói với đặc trưng MFCC và giải thuật Naïve Bayes Nearest Neighbors
Đang chuẩn bị liên kết để tải về tài liệu:
Điều khiển robot Pioneer P3-DX bằng tiếng nói với đặc trưng MFCC và giải thuật Naïve Bayes Nearest Neighbors
Huy Lâm
150
10
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Bài viết Điều khiển robot Pioneer P3-DX bằng tiếng nói với đặc trưng MFCC và giải thuật Naïve Bayes Nearest Neighbors trình bày ý tưởng điều khiển robot Pioneer P3-DX bằng tiếng nói theo thời gian thực với giải thuật Naïve Bayes Nearest Neighbor (NBNN) sử dụng đặc trưng MFCC (Mel-scale Frequency Cepstral Coefficient). | Kỷ yếu Hội nghị Quốc gia lần thứ VIII về Nghiên cứu cơ bản và ứng dụng Công nghệ thông tin (FAIR); Hà Nội, ngày 9_10/7/2015 ĐIỀU KHIỂN ROBOT PIONEER P3-DX BẰNG TIẾNG NÓI VỚI ĐẶC TRƯNG MFCC VÀ GIẢI THUẬT NAÏVE BAYES NEAREST NEIGHBORS Mã Trường Thành1, Đỗ Thanh Nghị2, Phạm Nguyên Khang2, Châu Ngân Khánh3 1 Khoa Kỹ thuật – Công nghệ, Trường CĐCĐ Sóc Trăng 2 Khoa CNTT&TT, Trường Đại học Cần Thơ 3 Trường Đại học An Giang truongthanh1511@gmail.com,dtnghi@cit.ctu.edu.vn TÓM TẮT - Trong bài báo này, chúng tôi trình bày ý tưởng điều khiển robot Pioneer P3-DX bằng tiếng nói theo thời gian thực với giải thuật Naïve Bayes Nearest Neighbor (NBNN) sử dụng đặc trưng MFCC (Mel-scale Frequency Cepstral Coefficient). Tập dữ liệu cho quá trình huấn luyện và nhận dạng là các mẫu tiếng nói tương ứng với các lệnh điều khiển robot được thu âm từ 20 người đọc khác nhau. Bước xử lý tiếp theo là thực hiện rút trích 39 đặc trưng MFCC từ mỗi mẫu âm thanh của tập dữ liệu thu được. Chúng tôi đề xuất sử dụng giải thuật máy học NBNN để nhận dạng trực tiếp các tiếng nói là các lệnh điều khiển hoạt động robot từ các đặc trưng MFCC tương ứng không cần bất kỳ thao tác xử lý trung gian nào khác. Kết quả thực nghiệm cho thấy rằng phương pháp đề xuất (NBNN sử dụng đặc trưng MFCC) có thể nhận dạng chính xác tiếng nói là các lệnh điều khiển robot, đáp ứng thời gian thực. Giải thuật NBNN cho độ chính xác trong nhận dạng là 98.5%, cao hơn khi so sánh với giải thuật (Support vector machines - máy học véctơ hỗ trợ) SVM và mô hình túi từ với độ chính xác tương ứng là 97.14%, giải thuật (Dynamic time warping – xoắn thời gian động) DTW có độ chính xác tương ứng là 98.4%, và (Hidden Markov model - mô hình Markov ẩn) HMM có độ chính xác là 97.8%. Hơn nữa, phương pháp NBNN sử dụng MFCC đơn giản và có thời gian thực hiện nhanh hơn, đáp ứng được yêu cầu điều khiển robot thời gian thực. Từ khóa - Nhận dạng âm thanh, Đặc trưng MFCC, Naive Bayes Nearest Neighbor, Điều khiển robot Pioneer P3-DX. I. GIỚI THIỆU Nghiên .
TÀI LIỆU LIÊN QUAN
Bài tập dài điều khiển robot công nghiệp part 2
Bài tập dài điều khiển robot công nghiệp
Robot công nghiệp và hệ thống điều khiển: Phần 2
Điều khiển robot công nghiệp part 1
Điều khiển robot công nghiệp part 2
Điều khiển robot công nghiệp part 3
Điều khiển robot công nghiệp part 4
Điều khiển robot công nghiệp part 5
Điều khiển robot công nghiệp part 6
Điều khiển robot công nghiệp part 7
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.