Luyện thi ĐH môn Toán 2015: Góc giữa hai mặt phẳng (phần 2) - Thầy Đặng Việt Hùng

Tài liệu "Luyện thi ĐH môn Toán 2015: Góc giữa hai mặt phẳng (phần 2) - Thầy Đặng Việt Hùng" cung cấp 1 số bài tập ví dụ và bài tập tự luyện. tài liệu sau để ôn tập và chuẩn bị cho kỳ thi Đại học 2015 cũng như các kỳ thi Đại học sau này. | Khóa h c LT H môn Toán – Th y NG VI T HÙNG Facebook: LyHung95 04. GÓC GI A HAI M T PH NG – P2 Th y Phương pháp gi i: xác nh góc gi a hai m t ph ng (P) và (Q) ta th c hi n như sau: nh giao tuy n ∆ = ( P ) ∩ (Q ) a = ( R) ∩ ( P) nh các o n giao tuy n thành ph n: ⇒ ( ( P );(Q ) ) = ( a; b ) b = ( R ) ∩ (Q ) +) Xác ng Vi t Hùng +) Tìm m t ph ng trung gian (R) mà (R) ⊥ ∆, ( ây là bư c quan tr ng nh t nhé!) +) Xác Ví d 1. Cho hình chóp có áy ABCD là hình ch nh t, AB = 2a; AD = 3a. SA vuông góc v i áy (ABCD) và góc gi a m t ph ng (SCD) và (ABCD) b ng 600. Tính góc gi a a) (SAC) và (SCD). b) (SAB) và (SBC). c) (SBC) và (SCD). Ví d 2. Cho hình chóp có áy ABCD là hình thang vuông t i A, B v i AB = BC = 2a; AD = 3a. 1 Hình chi u vuông góc c a S lên m t ph ng ABCD là i m H thu c c nh AB v i AH = HB. Bi t góc gi a 2 0 m t ph ng (SCD) và (ABCD) b ng 60 . Tính góc gi a a) SD và (ABCD). b) (SAB) và (SAC). Ví d 3. Cho hình chóp có áy ABCD là hình thoi tâm O, c nh a, BAD = 1200. G i H là trung i m c a OA. Bi t các m t ph ng (SHC) và (SHD) cùng vuông góc v i m t ph ng (ABCD) và góc gi a m t ph ng (SCD) và (ABCD) b ng 600. Tính góc gi a a) (SBC) và (ABCD). b) (SAC) và (SCD). Ví d 4. Cho t di n SABC có SA, SB, SC ôi m t vuông góc và SA = SB = SC. G i I, J l n lư t là trung i m AB, BC. Tính góc c a 2 m t ph ng (SAJ) và (SCI). Hư ng d n gi i: Do SA = SB = SC ⇒ AB = BC = AC ⇒ ∆ABC là tam giác u. Trong ∆ABC, g i H là giao i m c a SJ và CI, khi ó H là tr ng tâm, ng th i là tr c tâm ∆ABC u. Ta có, (SAJ) ∩ (SCI) = SH. xác nh góc gi a hai m t ph ng (SAJ) và (SCI) ta tìm m t ph ng mà vuông góc v i SH. Do ∆ABC u nên AH ⊥ BC, (1) L i có, SA, SB, SC ôi m t vuông góc nên SA ⊥ (SBC) ⇒ SA ⊥ BC, (2). T (1) và (2) ta ư c BC ⊥ (SAH) ⇒ BC ⊥ SH, (*) Tương t , ta cũng có AB ⊥ CH AB ⊥ CH ⇒ ⇒ AB ⊥ ( SCH ) SC ⊥ ( SAB ) ⊃ AB AB ⊥ CH Hay AB ⊥ SH, (**). T (*) và (**) ta ư c SH ⊥ (ABC). ( ABC ) ∩ ( SAJ ) = AJ Mà ⇒ ( ( SAJ ),( SCI ) ) = ( AJ , CI ) ( ABC ) ∩ ( SCI ) = CI .

Bấm vào đây để xem trước nội dung
TÀI LIỆU MỚI ĐĂNG
463    21    1    30-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.