A note on the melnii

With one (Poincare section) parameter and a particular motiom law (that associated to certain determined point of horno-heteroclinic orbits), the usual f'orm of' the llelni kov f'unction seems to be not convenient f'or certain problems. Another favourable form can be obtained by using a supplementary parameter - the arbitrary time constant in the general mentioned motion law. | Vietnam Journal of Mechanics, VAST, Vol. 29, No. 3 (2007), pp. 285 · 291 Special Issue Dedicated to the Memory of' Prof. Nguyen Van Dao A NOTE ON THE MELNII 0 is intensity of the external forcing ation p cost of period 27T; k > 0 is the linear damping coefficient. Putting x = x 1 , x = x 2 , the equation () can be written as XI = X2 X2, =XI - xr + c(pcost - kx2). () Hence: () ( ) The unperturbed Hamiltonian system (c = 0) possesses two homoclinic orbits - the right C and the left C' - homoclinic to the saddle (origin) 0, respectively encircling two centers J(l,O) and J'(-1,0), intersecting the abscissa ~is Ox= Ox 1 at A(v12,0) an~ A'(-v12, 0). 288 Nguyen Van Dinh The equation of these orbits is H(x.±) = H(x1, x2) = 0 or ± = x2 = ±~ () where + (-) corresponds to upper (lower)-half homoclinic orbits, respectively. The perturbation c(p cost - kx2) destroys C and C' to generate four invariant manifolds: the right and left unstable manifolds Cn and C~ and the right and left stable one Cs and C~. Below, our study is devoted to the right homoclinic orbit C a nd its corresponding stable and unstable invariant manifolds Cs and Cn· A particular (unpertubed) motion law along C is x(t) = x1 (t) = J2sech(t), ±(t) = x2(t) = -J2sech(t)tanh(t) . () x2(0) = -J2sech(O)tanh(O) = 0. () For t = 0, we have x1(0) = J2sech(O) = J2, Thus, the motion (4 .6) is that associated to the point A( J2, 0). The usual form of the Melnikov function is: +oo M(O) = - J J2sech(t - O)tanh(t - e){pcost + kJ2sech(t - O)tanh(t - e) }dt. (4 .8) -oo It gives the estimation of the distance between Cs and Cn on the Poincare section So at the point A( ./2, 0). As in [1], if we vary e, we can study only the variation of the distance between' Cs and Cn on different Poincare sections So at the same point A. The "general" motion law along C is: x(t +a:)= J2sech(t +a:), :i:(t +a:)= -v'2sech(t + o:)tanh(t +a) (4 .9) and the Melnikov function with two .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.