Tham khảo tài liệu 'đề thi thử môn toán năm 2011 - đề số 29', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | ĐỀ THI VÀ GỢI Ý BÀI GIẢI MÔN TOÁN-ĐH-CĐ năm 2011 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH x2 - mx 2m -1 Câu I 2 điểm . Cho hàm số y mx -1 1 có đồ thị là Cm m là tham số. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số 1 khi m 1. 2. Xác định m để tiệm cận xiên của Cm đi qua gốc tọa độ và hàm số 1 có cực trị. Câu II 2 điểm 1. 2. 2 .Kì. .2 . 2 sin I x 7-1 sin I x 7- I Giải phương trình k 3 J k 3 x3 y3 m x y t 3 - sin x Cho hệ phương trình x - y 2 Tìm tất cả các giá trị của m để hệ phương trình trên có 3 nghiệm phân biệt x1 y1 x2 y2 và x3 y3 sao cho x15 x2 x3 lập thành một cấp số cộng. 2 Câu III 2 điểm . 1. Tam giác ABC có a bV2 - Chứng minh rằng cos2A cos2B. - Tìm giá trị lớn nhất của góc B và giá trị tương ứng của các góc A C. c lnx. dx 2. Tính tích phân I 1 x 1 Câu IV 2 điểm . Trong không gian với hệ tọa độ Oxyz cho ba điểm A 6 -2 3 B 2 -1 3 C 4 0 - 1 . 1. Chứng minh rằng A B C là ba đỉnh của một tam giác. Tìm độ dài đường cao của tam giác ABC kẻ từ đỉnh A. 2. Tìm m và n để điểm M m 2 1 2n 3 thẳng hàng với A và C. PHẦN Tự CHỌN Thí sinh chỉ được chọn làm câu V. a hoặc câu Câu . Theo chương trình THPT không phân ban 2 điểm 22 -1V 1 1. Trong mặt phẳng với hệ tọa độ Oxy cho hypebol H có phương trình 2 3 và điểm M 2 1 . Viết phương trình đường thẳng d đi qua M biết rằng đường thẳng đó cắt H tại hai điểm A B mà M là trung điểm của AB. 2. Cho hai đường thẳng song song. Trên đường thẳng thứ nhất lấy 9 điểm phân biệt. Trên đường thẳng thứ hai lấy 16 điểm phân biệt. Hỏi có bao nhiêu tam giác với đỉnh là các điểm lấy trên hai đường thẳng đã cho. Câu . Theo chương trình THPT phân ban thí điểm 2 điểm 2007 2006 1. Giải phương trình I2006 - xl 12007 - xl 1 2. Cho hình chóp có đáy ABC là tam giác vuông cân tại đỉnh A A 90o AB AC a. Mặt bên qua cạnh huyền BC vuông góc với mặt đáy hai mặt bên còn lại đều hợp với mặt đáy các góc 60o. Hãy tính thể tích của khối chóp . BÀI Giải x2 - x 1 x2 - 2x Câu I. 1. m 1 y x -1 . MXĐ D R 1 . y x -1 2 y 0 x 0 x 2 TCĐ x 1 TCX y x x -