Tham khảo tài liệu đề thi thử toán - số 9 năm 2011 , tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Đề số 9 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số y = x3 + (1 – 2m)x2 + (2 – m)x + m + 2 (m là tham số) (1) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 2. 2) Tìm các giá trị của m để đồ thị hàm số (1) có điểm cực đại, điểm cực tiểu, đồng thời hoành độ của điểm cực tiểu nhỏ hơn 1. Câu II (2 điểm) 1) Giải phương trình: (1) 2) Giải hệ phương trình: (x, y ) (2) Câu III (1 điểm) Tính tích phân: Câu IV (1 điểm) Cho hình hộp đứng ’B’C’D’ có các cạnh AB=AD = a, AA’ = và góc BAD = 600 . Gọi M và N lần lượt là trung điểm của các cạnh A’D’ và A’B’. Chứng minh rằng AC’ vuông góc với mặt phẳng (BDMN). Tính thể tích khối chóp . Câu V (1 điểm) Cho x,y là các số thực thỏa mãn điều kiện x2+xy+y2 3 .Chứng minh rằng: II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có đỉnh A thuộc đường thẳng d: x – 4y –2 = 0, cạnh BC song song với d, phương trình đường cao BH: x + y + 3 = 0 và trung điểm của cạnh AC là M(1; 1). Tìm tọa độ các đỉnh A, B, C. 2) Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ( ): 3x + 2y – z + 4 = 0 và hai điểm A(4;0;0) , B(0;4;0) .Gọi I là trung điểm của đoạn thẳng AB. Xác định tọa độ điểm K sao cho KI vuông góc với mặt phẳng ( ), đồng thời K cách đều gốc tọa độ O và ( ). Câu (1 điểm) Giải hệ phương trình: B. Theo chương trình nâng cao Câu (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy cho có cạnh AC đi qua điểm M(0;– 1). Biết AB = 2AM, phương trình đường phân giác trong AD: x – y = 0, phương trình đường cao CH: 2x + y + 3 = 0. Tìm tọa độ các đỉnh của . 2) Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P): 4x – 3y + 11z = 0 và hai đường thẳng d1: = = , = = . Chứng minh rằng d1 và d2 chéo nhau. Viết phương trình đường thẳng nằm trên (P), đồng thời cắt cả d1 và d2. Câu (1 điểm) Giải phương trình: . Hướng dẫn Đề sô 9 Câu I: 2) YCBT phương trình y' = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn: x1 < x2 < 1 < m < Câu II: 1) (1) cos4x = 2) (2) hoặc Câu III: Đặt t = . Câu IV: = = . = .a . Câu V: Đặt A = , B = Nếu y = 0 thì B = 0 B 3 Nếu y 0 thì đặt t = ta được B = A. Xét phương trình: (m–1)t2 + (m+1)t + m + 3 = 0 (1) (1) có nghiệm m = 1 hoặc = (m+1)2 – 4(m–1)(m+3) 0 m Vì 0 A 3 nên –3– B –3+ Câu : 1) A , C , B(– 4;1) 2) I(2;2;0). Phương trình đường thẳng KI: . Gọi H là hình chiếu của I trên (P): H(–1;0;1). Giả sử K(xo;yo;zo). Ta có: KH = KO K(– ; ; ) Câu : Từ (b) x = 2y hoặc x = 10y (c). Ta có (a) ln(1+x) – x = ln(1+y) – y (d) Xét hàm số f(t) = ln(1+t) – t với t (–1; + ) f (t) = Từ BBT của f(t) suy ra; nếu phương trình (d) có nghiệm (x;y) với x y thì x, y là 2 số trái dấu, nhưng điều này mâu thuẩn (c). Vậy hệ chỉ có thể có nghiệm (x, y) với x = y. Khi đó thay vào (3) ta được x = y = 0 Câu : 1) Gọi (d) là đường thẳng qua M vuông góc với AD cắt AD, AB lần lượt tại I và N, ta có: (I là trung điểm MN). . AB = 2AM AB = 2AN N là trung điểm AB . 2) Toạ độ giao điểm của d1 và (P): A(–2;7;5) Toạ độ giao điểm của d2 và (P): B(3;–1;1) Phương trình đường thẳng : Câu : PT Từ (2) . Thay vào (1) x = 1